Sains
Malaysiana 54(8)(2025): 1985-1994
http://doi.org/10.17576/jsm-2025-5408-09
Evaluating the Efficacy of Cryopreservation Media for
the Preservation and Short-Term Storage of Human Dermal Fibroblast
(Menilai Keberkesanan Media
Pengkrioawetan untuk Pemeliharaan dan Penyimpanan Jangka Pendek Fibroblas
Dermal Manusia)
TITHTEEYA RATTANACHOT1,
NUR RASYIDAH HAZIMAH MOHD ROSDI1, NUSAIBAH SALLEHUDDIN1,
FAUZI MH BUSRA1,2 & MANIRA MAAROF1,2,3,*
1Department of Tissue Engineering and
Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia,
56000 Cheras, Kuala Lumpur, Malaysia
2Advance Bioactive Materials-Cells UKM
Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
3Ageing and Degenerative Disease UKM
Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
Diserahkan:
20 November 2024/Diterima: 17 Jun 2025
Abstract
Cryopreservation is a vital process
for long-term preservation of cells without compromising their viability and functionality.
Continuous cell culturing can lead to reduction in cell viability, higher risk
of contamination, and increased reagent consumption. Optimizing short-term
storage is essential to minimize cell damage and enhance cell adaptability for
applications requiring brief storage duration. This study evaluates the effects
of short-term storage on human dermal fibroblasts cryopreserved in different cryopreservation
media. Redundant skin samples were obtained from surgeries with patient
consent, processed, and sub-cultured to passage three (P3). Confluent cells
were trypsinised and cryopreserved in three cryopreservation media: Foetal
bovine serum with 10% dimethyl sulfoxide (FBS+10%DMSO), CryoStor10 (CS10), and
cryo freezing serum-free media (CF-SFM). Cells were stored at -80 °C for 7 days,
14 days, and 1 month. Fibroblasts maintained their spindle-shaped, elongated
morphology across all groups post-storage. The total number of live cells
slightly decreased after 1 month, but no significant differences were found
between the groups. Cell viability in CS10 after 1 month was significantly
lower compared to the other storage durations, while no significant differences
were observed in the other two media groups. Immunocytochemistry showed
positive collagen type I (Col-1) and Ki67 expression at all storage durations.
These findings suggest that fibroblasts retain their characteristics after
short-term storage at -80 °C in different cryopreservation media. However,
further studies are needed to examine the impact of long-term storage on other
cell types.
Keywords: Cell characteristics; cryopreservation;
fibroblasts; short-term storage
Abstrak
Pengkrioawetan merupakan proses penting
untuk pemeliharaan jangka panjang sel tanpa menjejaskan daya hidup dan
fungsinya. Kultur sel berterusan boleh menyebabkan pengurangan daya hidup sel, peningkatan
risiko pencemaran dan penggunaan reagen yang tinggi. Pengoptimuman penyimpanan
jangka pendek adalah penting untuk mengurangkan kerosakan dan meningkatkan kebolehsuaian
sel bagi aplikasi yang memerlukan tempoh penyimpanan yang singkat. Penyelidikan
ini menilai kesan penyimpanan jangka pendek terhadap fibroblas dermal manusia
yang dikrioawet dalam media krioawetan berbeza. Sampel kulit berlebihan
diperoleh daripada pembedahan dengan kebenaran pesakit, diproses dan dikultur
sehingga subkultur 3 (P3). Sel yang mencapai konfluensi akan ditripsinkan dan dibekukan
dalam tiga jenis media berbeza: serum janin lembu dengan 10% dimetil sulfoksida
(FBS+10%DMSO), CryoStor10 (CS10) dan media bebas serum pembekuan kriogenik
(CF-SFM). Sel ini disimpan pada suhu -80 °C selama 7 hari, 14 hari dan 1 bulan.
Fibroblas mengekalkan morfologi berbentuk gelendong yang memanjang selepas
penyimpanan. Jumlah keseluruhan sel hidup menurun sedikit selepas 1 bulan,
namun tiada perbezaan yang ketara ditemui antara kumpulan. Keviabelan sel dalam
CS10 selepas 1 bulan adalah lebih rendah berbanding tempoh penyimpanan yang
lain, manakala tiada perbezaan diperhatikan dalam dua kumpulan media yang lain.
Analisis imunositokimia menunjukkan ekspresi positif kolagen jenis I (Col-1)
dan Ki67 pada semua tempoh penyimpanan. Penemuan ini menunjukkan bahawa
fibroblas dapat mengekalkan cirinya selepas penyimpanan jangka pendek pada suhu
-80 °C dalam media krioawetan berbeza. Namun, kajian lanjut diperlukan untuk
menilai kesan penyimpanan jangka panjang pada jenis sel lain.
Kata kunci: Ciri sel; fibroblas;
pengkrioawetan; penyimpanan jangka pendek
RUJUKAN
Awan, M., Buriak, I., Fleck, R., Fuller, B.,
Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y.,
Rogulska, O., Stolzing, A. & Stacey, G.N. 2020. Dimethyl sulfoxide: A
central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine 15(3): 1463-1491. https://doi.org/10.2217/rme-2019-0145
Baust, J.M., Snyder, K.K., Van Buskirk, R.G.
& Baust, J.G. 2022. Assessment of the impact of post-thaw stress pathway
modulation on cell recovery following cryopreservation in a hematopoietic
progenitor cell model. Cells 11(2): 278.
https://doi.org/10.3390/cells11020278.
Caneparo, C., Chabaud, S., Fradette, J.
& Bolduc, S. 2022. Evaluation of a serum-free medium for human epithelial
and stromal cell culture. International Journal of Molecular Sciences 23(17): 10035. https://doi.org/10.3390/ijms231710035
Erol, O.D., Pervin, B., Seker, M.E. &
Aerts-Kaya, F. 2021. Effects of storage media, supplements and cryopreservation
methods on quality of stem cells. World Journal of Stem Cells 13(9):
1197-1214. https://doi.org/10.4252/wjsc.v13.i9.1197
Hunt, C.J. 2019. Technical considerations
in the freezing, low-temperature storage and thawing of stem cells for cellular
therapies. Transfusion Medicine and Hemotherapy 46(3): 134-150.
https://doi.org/10.1159/000497289
Ishak, M.F., Manira, M., Ng, M.H., Khairul,
B., Gargy, L., Aminuddin, B.S. & Ruszymah, B.H.I. 2019. Long term effect of
cryopreservation on primary human skin cells. Sains Malaysiana 48(1):
137-144. https://doi.org/10.17576/jsm-2019-4801-16
Law, J.X., Musa, F., Ruszymah, B.H., El
Haj, A.J. & Yang, Y. 2016. A comparative study of skin cell activities in
collagen and fibrin constructs. Medical Engineering and Physics 38(9):
854-861. https://doi.org/10.1016/j.medengphy.2016.05.017
Linkova, D.D., Rubtsova, Y.P. & Egorikhina,
M.N. 2022. Cryostorage of mesenchymal stem cells and biomedical cell-based
products. Cells 11(17): 2691. https://doi.org/10.3390/CELLS11172691
Lisan, R.A., Mahyudin, F., Edward, M.
& Buwana, D.S. 2024. Role of preservation methods using deep-freezing and
liquid nitrogen in bone allograft characteristics: An in vitro study. Narra
J. 4(1): e757. https://doi.org/10.52225/narra.v4i1.757
Ma, Y., Gao, L., Tian, Y., Chen, P., Yang,
J. & Zhang, L. 2021. Advanced biomaterials in cell preservation:
Hypothermic preservation and cryopreservation. Acta Biomaterialia 131:
97-116. https://doi.org/10.1016/j.actbio.2021.07.001
Manira, M., Khairul Anuar, K., Seet,
W.T., Ahmad Irfan, A.W., Ng, M.H., Chua, K.H., Mohd Heikal, M.Y., Aminuddin,
B.S. & Ruszymah, B.H. 2014. Comparison of the effects between
animal-derived trypsin and recombinant trypsin on human skin cells
proliferation, gene and protein expression. Cell and Tissue Banking 15(1): 41-49. https://doi.org/10.1007/s10561-013-9368-y
Marcantonini, G., Bartolini, D., Zatini, L.,
Costa, S., Passerini, M., Rende, M., Luca, G., Basta,
G., Murdolo, G., Calafiore, R. & Galli, F. 2022.
Natural cryoprotective and cytoprotective agents in cryopreservation: A focus
on melatonin. Molecules 27(10): 3254. https://doi.org/10.3390/molecules27103254
McAndrews, K.M., Miyake, T., Ehsanipour, E.A.,
Kelly, P.J., Becker, L.M., McGrail, D.J., Sugimoto, H., LeBleu, V.S., Ge, Y.
& Kalluri, R. 2022. Dermal αSMA+ myofibroblasts orchestrate skin wound repair via β1 integrin and independent of type I collagen
production. EMBO
Journal 41(7): e109470.
https://doi.org/10.15252/EMBJ.2021109470/SUPPL_FILE/EMBJ2021109470-SUP-0007-SDATAEV.ZIP
Meneghel, J., Kilbride, P. & Morris, G.J.
2020. Cryopreservation as a key element in the successful delivery of
cell-based therapies - A review. Frontiers in Medicine 7: 592242.
https://doi.org/10.3389/FMED.2020.592242/BIBTEX
Mohamed, H.M., Sundar, P., Ridwan, N.A.A., Cheong, A.J.,
Mohamad Salleh, N.A., Sulaiman, N., Mh Busra, F. & Maarof, M. 2024. Optimisation of cryopreservation conditions,
including storage duration and revival methods, for the viability of human
primary cells. BMC Molecular and Cell Biology 25(1): 20.
https://doi.org/10.1186/s12860-024-00516-6
Murray, K.A. & Gibson, M.I. 2022.
Chemical approaches to cryopreservation. Nature Reviews Chemistry 6:
579-593. https://doi.org/10.1038/s41570-022-00407-4
Nur Izzah Md Fadilah, Mh Busra Fauzi &
Manira Maarof. 2024. Effect of multiple-cycle collections of conditioned media
from different cell sources towards fibroblasts in in vitro wound
healing model. Pharmaceutics 16(6): 767.
https://doi.org/10.3390/pharmaceutics16060767
Prabhu, V., Rao, B.S.S., Rao, A.C.K., Prasad,
K. & Mahato, K.K. 2022. Photobiomodulation invigorating collagen
deposition, proliferating cell nuclear antigen and Ki67 expression during
dermal wound repair in mice. Lasers in Medical Science 37(1): 171-180.
https://doi.org/10.1007/S10103-020-03202-Z/FIGURES/5
Shorokhova, M., Pugovkina, N., Zemelko, V.,
Lyublinskaya, O. & Grinchuk, T. 2024. Long-term cryopreservation may cause
genomic instability and the premature senescence of cells. International
Journal of Molecular Sciences 25(3): 1467.
https://doi.org/10.3390/ijms25031467
Singh, M., Henry, C., Ma, X., Abolude, A.T.,
Moawad, A.R., Stephens, T. & Chandra, R. 2023. Effect of different
cryopreservation temperatures on recovery of goat skin derived fibroblast cells. Journal of Biotech Research 15: 355-359.
Uhrig, M., Ezquer, F. & Ezquer, M. 2022.
Improving cell recovery: Freezing and thawing optimization of induced
pluripotent stem cells. Cells 11(5): 799.
https://doi.org/10.3390/CELLS11050799/S1
Valyi-Nagy, K., Betsou, F., Susma, A.
& Valyi-Nagy, T. 2021. Optimization of viable glioblastoma cryopreservation
for establishment of primary tumor cell cultures. Biopreservation and
Biobanking 19(1): 66. https://doi.org/10.1089/BIO.2020.0050
Whaley, D., Damyar, K., Witek, R.P., Mendoza,
A., Alexander, M. & Lakey, J.R.T. 2021. Cryopreservation: An overview of
principles and cell-specific considerations. Cell Transplantation 30:
963689721999617. https://doi.org/10.1177/0963689721999617
Yang, J., Gao, L., Liu, M., Sui, X., Zhu, Y.,
Wen, C. & Zhang, L. 2020. Advanced biotechnology for cell cryopreservation. Transactions of Tianjin University 26(6): 409-423.
https://doi.org/10.1007/s12209-019-00227-6
*Pengarang untuk surat-menyurat; email: manira@ukm.edu.my
|